skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Padullés_Cubino, Josep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In our changing world, understanding plant community responses to global change drivers is critical for predicting future ecosystem composition and function. Plant functional traits promise to be a key predictive tool for many ecosystems, including grasslands; however, their use requires both complete plant community and functional trait data. Yet, representation of these data in global databases is sparse, particularly beyond a handful of most used traits and common species. Here we present the CoRRE Trait Data, spanning 17 traits (9 categorical, 8 continuous) anticipated to predict species’ responses to global change for 4,079 vascular plant species across 173 plant families present in 390 grassland experiments from around the world. The dataset contains complete categorical trait records for all 4,079 plant species obtained from a comprehensive literature search, as well as nearly complete coverage (99.97%) of imputed continuous trait values for a subset of 2,927 plant species. These data will shed light on mechanisms underlying population, community, and ecosystem responses to global change in grasslands worldwide. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Urban forests provide ecosystem services important for regulating climate, conserving biodiversity, and maintaining human well‐being. However, these forests vary in composition and physiological traits due to their unique biophysical and social contexts. This variation complicates assessing the functions and services of different urban forests. To compare the characteristics of the urban forest, we sampled the species composition and two externally sourced traits (drought tolerance and water‐use capacity) of tree and shrub species in residential yards, unmanaged areas, and natural reference ecosystems within six cities across the contiguous US. As compared to natural and unmanaged forests, residential yards had markedly higher tree and shrub species richness, were composed primarily of introduced species, and had more species with low drought tolerance. The divergence between natural and human‐managed areas was most dramatic in arid climates. Our findings suggest that the answer to the question of “what is an urban forest” strongly depends on where you look within and between cities. 
    more » « less
  3. Abstract Despite interest in the contribution of evapotranspiration (ET) of residential turfgrass lawns to household and municipal water budgets across the United States, the spatial and temporal variability of residential lawn ET across large scales is highly uncertain. We measured instantaneous ET (ETinst) of lawns in 79 residential yards in six metropolitan areas: Baltimore, Boston, Miami, Minneapolis‐St. Paul (mesic climates), Los Angeles and Phoenix (arid climates). Each yard had one of four landscape types and management practices: traditional lawn‐dominated yards with high or low fertilizer input, yards with water‐conserving features, and yards with wildlife‐friendly features. We measured ETinstin situ during the growing season using portable chambers and identified environmental and anthropogenic factors controlling ET in residential lawns. For each household, we used ETinstto estimate daily ET of the lawn (ETdaily) and multiplied ETdailyby the lawn area to estimate the total volume of water lost through ET of the lawn (ETvol). ETdailyvaried from 0.9 ± 0.4 mm d1in mesic cities to 2.9 ± 0.7 mm d−1in arid cities. Neither ETinstnor ETdailywas significantly influenced by yard landscape types and ETinstpatterns indicated that lawns may be largely decoupled from regional rain‐driven climate patterns. ETvolranged from ∼0 L d−1to over 2,000 L d−1, proportionally increasing with lawn area. Current irrigation and lawn management practices did not necessarily result in different ETinstor ETdailyamong traditional, water‐conserving, or wildlife‐friendly yards, but smaller lawn areas in water‐conserving and wildlife‐friendly yards resulted in lower ETvol
    more » « less
  4. Summary Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny?We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi‐permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr.Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition.As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable. 
    more » « less
  5. Abstract Urbanization has a homogenizing effect on biodiversity and leads to communities with fewer native species and lower conservation value. However, few studies have explored whether or how land management by urban residents can ameliorate the deleterious effects of this homogenization on species composition. We tested the effects of local (land management) and neighborhood‐scale (impervious surface and tree canopy cover) features on breeding bird diversity in six US metropolitan areas that differ in regional species pools and climate. We used a Bayesian multiregion community model to assess differences in species richness, functional guild richness, community turnover, population vulnerability, and public interest in each bird community in six land management types: two natural area park types (separate and adjacent to residential areas), two yard types with conservation features (wildlife‐certified and water conservation) and two lawn‐dominated yard types (high‐ and low‐fertilizer application), and surrounding neighborhood‐scale features. Species richness was higher in yards compared with parks; however, parks supported communities with high conservation scores while yards supported species of high public interest. Bird communities in all land management types were composed of primarily native species. Within yard types, species richness was strongly and positively associated with neighborhood‐scale tree canopy cover and negatively associated with impervious surface. At a continental scale, community turnover between cities was lowest in yards and highest in parks. Within cities, however, turnover was lowest in high‐fertilizer yards and highest in wildlife‐certified yards and parks. Our results demonstrate that, across regions, preserving natural areas, minimizing impervious surfaces and increasing tree canopy are essential strategies to conserve regionally important species. However, yards, especially those managed for wildlife support diverse, heterogeneous bird communities with high public interest and potential to support species of conservation concern. Management approaches that include the preservation of protected parks, encourage wildlife‐friendly yards and acknowledge how public interest in local birds can advance successful conservation in American residential landscapes. 
    more » « less